

EXAMINATIONS COUNCIL OF SWAZILAND Swaziland General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
PHYSICAL SC	CIENCE		6888/04
Paper 4 Alterna	ative to Practical	Oc	tober/November 2018
			1 hour
Candidates and	swer on the Question Paper.		
No Additional N	Materials are required.		
READ THESE	INSTRUCTIONS FIRST		
Write in dark bl You may use a	lue or black pen. n HB pencil for any diagrams, ples, paper clips, highlighters		
Answer all que	estions.		
You may use a	n electronic calculator.		
•		working or if you do not use appropriate u	

For Examiner's Use	
1	
2	
Total	

This document consists of 8 printed pages.

© ECOS 2018 [Turn over

1

A st	uder	nt is provided with a white mixture of two solids.	
One	e soli	d is soluble in water while the other one is insoluble.	
She	add	s about 10 cm ³ of water to the mixture and stirs for a few minutes.	
She	ther	n separates the insoluble solid from the solution.	
(a)	Des	scribe the method she uses to separate the insoluble solid from the solution.	
			[2]
(b)	She	e now pours 5 cm³ of this solution into a test-tube.	
	She	e acidifies the solution with dilute nitric acid.	
	She	e then adds about 4 drops of aqueous silver nitrate.	
	A po	ositive result for a chloride ion is observed.	
	(i)	State the observation she makes.	
			[1]
	(ii)	Explain why she uses dilute nitric acid to acidify the solution.	
			[2]

		3
(c)	The	student then pours about 2 cm³ of the acidified solution into a clean test-tube.
	She	adds about 1 cm ³ of aqueous sodium hydroxide.
	solu	then puts a small strip of aluminium foil into the test-tube and gently heats the tion while holding a damp strip of Universal indicator paper at the mouth of the tube.
	An a	alkaline gas is produced.
	(i)	State the observation she makes on the indicator paper and suggest the pH of the gas formed.
		observation
		pH[2]
	(ii)	Describe how she determines the value of the pH using the Universal indicator paper.
		[1]
	(iii)	Identify the gas produced.
		[1]
	(iv)	Explain why the student uses the Universal indicator instead of litmus paper to find the pH of the gas.
		[2]
	(v)	Explain why the student uses a clean test-tube in the experiment.

(d)	The student then takes some of the original insoluble solid and puts it in a test-tube.		
	She	then adds about 5 cm³ of hydrochloric acid to the insoluble solid.	
	She	observes bubbles being produced.	
	(i)	State the conclusion she makes from this observation.	
		[1]
	(ii)	Suggest two ways of making this reaction faster.	
		1	
		2	2]
	(iii)	Describe a test she can carry out to show the presence of calcium ions in the solution formed.	
		test	
		result	
		[3]
	(iv)	State one precaution she should take when handling acids.	
		[1]
(e)	Sug	gest the name of the insoluble solid in (d).	
		[1]

2 A student compares the rate of cooling of water in two conical flasks.

Conical flask **A** is not insulated and conical flask **B** is insulated, with paper wipes.

The student pours 200 cm³ of hot water into both conical flasks.

She closes each conical flask with a stopper fitted with a thermometer.

Fig. 2.1 shows the set up for the experiment.

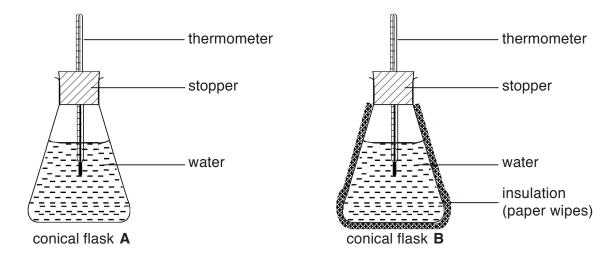


Fig. 2.1

The student measures the initial temperature of the hot water in both conical flasks for time, t = 0 seconds.

Fig. 2.2 shows the reading of the initial temperature of the water in both conical flasks.

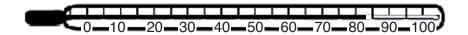


Fig. 2.2

The student starts a stopwatch immediately after recording the initial temperature and records the temperatures as shown in Table 2.1.

Table 2.1

time/seeseds	conical flask A	conical flask B
time/seconds	temperature/	temperature/
0		
60	74	78
120	60	67
180	48	58
240	36	50
300	25	40

(a) Complete Table 2.1 by stating the unit of temperature and the temperature in both flasks at t=0 seconds.

[2]

(b) Plot the data from Table 2.1 on the grid in Fig. 2.3.

Draw and label the lines of best fit for both conical flasks.

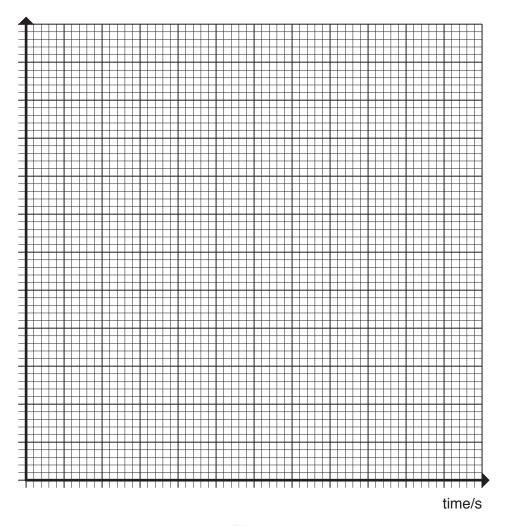


Fig. 2.3

- (c) Calculate the gradient of
 - (i) graph A,

.....[2]

(ii) graph B.

.....[1]

(d)	State and explain, using your values in (c) , which conical flask has a lower cooling rate.	
(e)	 (i)	State the effect of insulating flask B .
	(::)	[1]
	(ii)	Describe how the insulation works in (e)(i).
		[2]
(f)	(i)	Explain, using your graph in (b) , why the cooling rate of water can be said to be linear in the given time interval.
		[2]
	(ii)	State two conditions that are kept constant in order to get reliable results in this experiment.
		1 2 [2]
(g)	Cal	culate the time difference between the two flasks cooling to 70 °C.
		[2]